OpenVDB  9.0.1
Quat.h
Go to the documentation of this file.
1 // Copyright Contributors to the OpenVDB Project
2 // SPDX-License-Identifier: MPL-2.0
3 
4 #ifndef OPENVDB_MATH_QUAT_H_HAS_BEEN_INCLUDED
5 #define OPENVDB_MATH_QUAT_H_HAS_BEEN_INCLUDED
6 
7 #include "Mat.h"
8 #include "Mat3.h"
9 #include "Math.h"
10 #include "Vec3.h"
11 #include <openvdb/Exceptions.h>
12 #include <cmath>
13 #include <iostream>
14 #include <sstream>
15 #include <string>
16 
17 
18 namespace openvdb {
20 namespace OPENVDB_VERSION_NAME {
21 namespace math {
22 
23 template<typename T> class Quat;
24 
25 /// Linear interpolation between the two quaternions
26 template <typename T>
27 Quat<T> slerp(const Quat<T> &q1, const Quat<T> &q2, T t, T tolerance=0.00001)
28 {
29  T qdot, angle, sineAngle;
30 
31  qdot = q1.dot(q2);
32 
33  if (fabs(qdot) >= 1.0) {
34  angle = 0; // not necessary but suppresses compiler warning
35  sineAngle = 0;
36  } else {
37  angle = acos(qdot);
38  sineAngle = sin(angle);
39  }
40 
41  //
42  // Denominator close to 0 corresponds to the case where the
43  // two quaternions are close to the same rotation. In this
44  // case linear interpolation is used but we normalize to
45  // guarantee unit length
46  //
47  if (sineAngle <= tolerance) {
48  T s = 1.0 - t;
49 
50  Quat<T> qtemp(s * q1[0] + t * q2[0], s * q1[1] + t * q2[1],
51  s * q1[2] + t * q2[2], s * q1[3] + t * q2[3]);
52  //
53  // Check the case where two close to antipodal quaternions were
54  // blended resulting in a nearly zero result which can happen,
55  // for example, if t is close to 0.5. In this case it is not safe
56  // to project back onto the sphere.
57  //
58  double lengthSquared = qtemp.dot(qtemp);
59 
60  if (lengthSquared <= tolerance * tolerance) {
61  qtemp = (t < 0.5) ? q1 : q2;
62  } else {
63  qtemp *= 1.0 / sqrt(lengthSquared);
64  }
65  return qtemp;
66  } else {
67 
68  T sine = 1.0 / sineAngle;
69  T a = sin((1.0 - t) * angle) * sine;
70  T b = sin(t * angle) * sine;
71  return Quat<T>(a * q1[0] + b * q2[0], a * q1[1] + b * q2[1],
72  a * q1[2] + b * q2[2], a * q1[3] + b * q2[3]);
73  }
74 
75 }
76 
77 template<typename T>
78 class Quat
79 {
80 public:
81  using value_type = T;
82  using ValueType = T;
83  static const int size = 4;
84 
85  /// Trivial constructor, the quaternion is NOT initialized
86 #if OPENVDB_ABI_VERSION_NUMBER >= 8
87  /// @note destructor, copy constructor, assignment operator and
88  /// move constructor are left to be defined by the compiler (default)
89  Quat() = default;
90 #else
91  Quat() {}
92 
93  /// Copy constructor
94  Quat(const Quat &q)
95  {
96  mm[0] = q.mm[0];
97  mm[1] = q.mm[1];
98  mm[2] = q.mm[2];
99  mm[3] = q.mm[3];
100 
101  }
102 
103  /// Assignment operator
104  Quat& operator=(const Quat &q)
105  {
106  mm[0] = q.mm[0];
107  mm[1] = q.mm[1];
108  mm[2] = q.mm[2];
109  mm[3] = q.mm[3];
110 
111  return *this;
112  }
113 #endif
114 
115  /// Constructor with four arguments, e.g. Quatf q(1,2,3,4);
116  Quat(T x, T y, T z, T w)
117  {
118  mm[0] = x;
119  mm[1] = y;
120  mm[2] = z;
121  mm[3] = w;
122 
123  }
124 
125  /// Constructor with array argument, e.g. float a[4]; Quatf q(a);
126  Quat(T *a)
127  {
128  mm[0] = a[0];
129  mm[1] = a[1];
130  mm[2] = a[2];
131  mm[3] = a[3];
132 
133  }
134 
135  /// Constructor given rotation as axis and angle, the axis must be
136  /// unit vector
137  Quat(const Vec3<T> &axis, T angle)
138  {
139  // assert( REL_EQ(axis.length(), 1.) );
140 
141  T s = T(sin(angle*T(0.5)));
142 
143  mm[0] = axis.x() * s;
144  mm[1] = axis.y() * s;
145  mm[2] = axis.z() * s;
146 
147  mm[3] = T(cos(angle*T(0.5)));
148 
149  }
150 
151  /// Constructor given rotation as axis and angle
153  {
154  T s = T(sin(angle*T(0.5)));
155 
156  mm[0] = (axis==math::X_AXIS) * s;
157  mm[1] = (axis==math::Y_AXIS) * s;
158  mm[2] = (axis==math::Z_AXIS) * s;
159 
160  mm[3] = T(cos(angle*T(0.5)));
161  }
162 
163  /// Constructor given a rotation matrix
164  template<typename T1>
165  Quat(const Mat3<T1> &rot) {
166 
167  // verify that the matrix is really a rotation
168  if(!isUnitary(rot)) { // unitary is reflection or rotation
170  "A non-rotation matrix can not be used to construct a quaternion");
171  }
172  if (!isApproxEqual(rot.det(), T1(1))) { // rule out reflection
174  "A reflection matrix can not be used to construct a quaternion");
175  }
176 
177  T trace(rot.trace());
178  if (trace > 0) {
179 
180  T q_w = 0.5 * std::sqrt(trace+1);
181  T factor = 0.25 / q_w;
182 
183  mm[0] = factor * (rot(1,2) - rot(2,1));
184  mm[1] = factor * (rot(2,0) - rot(0,2));
185  mm[2] = factor * (rot(0,1) - rot(1,0));
186  mm[3] = q_w;
187  } else if (rot(0,0) > rot(1,1) && rot(0,0) > rot(2,2)) {
188 
189  T q_x = 0.5 * sqrt(rot(0,0)- rot(1,1)-rot(2,2)+1);
190  T factor = 0.25 / q_x;
191 
192  mm[0] = q_x;
193  mm[1] = factor * (rot(0,1) + rot(1,0));
194  mm[2] = factor * (rot(2,0) + rot(0,2));
195  mm[3] = factor * (rot(1,2) - rot(2,1));
196  } else if (rot(1,1) > rot(2,2)) {
197 
198  T q_y = 0.5 * sqrt(rot(1,1)-rot(0,0)-rot(2,2)+1);
199  T factor = 0.25 / q_y;
200 
201  mm[0] = factor * (rot(0,1) + rot(1,0));
202  mm[1] = q_y;
203  mm[2] = factor * (rot(1,2) + rot(2,1));
204  mm[3] = factor * (rot(2,0) - rot(0,2));
205  } else {
206 
207  T q_z = 0.5 * sqrt(rot(2,2)-rot(0,0)-rot(1,1)+1);
208  T factor = 0.25 / q_z;
209 
210  mm[0] = factor * (rot(2,0) + rot(0,2));
211  mm[1] = factor * (rot(1,2) + rot(2,1));
212  mm[2] = q_z;
213  mm[3] = factor * (rot(0,1) - rot(1,0));
214  }
215  }
216 
217  /// Reference to the component, e.g. q.x() = 4.5f;
218  T& x() { return mm[0]; }
219  T& y() { return mm[1]; }
220  T& z() { return mm[2]; }
221  T& w() { return mm[3]; }
222 
223  /// Get the component, e.g. float f = q.w();
224  T x() const { return mm[0]; }
225  T y() const { return mm[1]; }
226  T z() const { return mm[2]; }
227  T w() const { return mm[3]; }
228 
229  // Number of elements
230  static unsigned numElements() { return 4; }
231 
232  /// Array style reference to the components, e.g. q[3] = 1.34f;
233  T& operator[](int i) { return mm[i]; }
234 
235  /// Array style constant reference to the components, e.g. float f = q[1];
236  T operator[](int i) const { return mm[i]; }
237 
238  /// Cast to T*
239  operator T*() { return mm; }
240  operator const T*() const { return mm; }
241 
242  /// Alternative indexed reference to the elements
243  T& operator()(int i) { return mm[i]; }
244 
245  /// Alternative indexed constant reference to the elements,
246  T operator()(int i) const { return mm[i]; }
247 
248  /// Return angle of rotation
249  T angle() const
250  {
251  T sqrLength = mm[0]*mm[0] + mm[1]*mm[1] + mm[2]*mm[2];
252 
253  if ( sqrLength > 1.0e-8 ) {
254 
255  return T(T(2.0) * acos(mm[3]));
256 
257  } else {
258 
259  return T(0.0);
260  }
261  }
262 
263  /// Return axis of rotation
264  Vec3<T> axis() const
265  {
266  T sqrLength = mm[0]*mm[0] + mm[1]*mm[1] + mm[2]*mm[2];
267 
268  if ( sqrLength > 1.0e-8 ) {
269 
270  T invLength = T(T(1)/sqrt(sqrLength));
271 
272  return Vec3<T>( mm[0]*invLength, mm[1]*invLength, mm[2]*invLength );
273  } else {
274 
275  return Vec3<T>(1,0,0);
276  }
277  }
278 
279 
280  /// "this" quaternion gets initialized to [x, y, z, w]
281  Quat& init(T x, T y, T z, T w)
282  {
283  mm[0] = x; mm[1] = y; mm[2] = z; mm[3] = w;
284  return *this;
285  }
286 
287  /// "this" quaternion gets initialized to identity, same as setIdentity()
288  Quat& init() { return setIdentity(); }
289 
290  /// Set "this" quaternion to rotation specified by axis and angle,
291  /// the axis must be unit vector
292  Quat& setAxisAngle(const Vec3<T>& axis, T angle)
293  {
294 
295  T s = T(sin(angle*T(0.5)));
296 
297  mm[0] = axis.x() * s;
298  mm[1] = axis.y() * s;
299  mm[2] = axis.z() * s;
300 
301  mm[3] = T(cos(angle*T(0.5)));
302 
303  return *this;
304  } // axisAngleTest
305 
306  /// Set "this" vector to zero
308  {
309  mm[0] = mm[1] = mm[2] = mm[3] = 0;
310  return *this;
311  }
312 
313  /// Set "this" vector to identity
315  {
316  mm[0] = mm[1] = mm[2] = 0;
317  mm[3] = 1;
318  return *this;
319  }
320 
321  /// Returns vector of x,y,z rotational components
322  Vec3<T> eulerAngles(RotationOrder rotationOrder) const
323  { return math::eulerAngles(Mat3<T>(*this), rotationOrder); }
324 
325  /// Equality operator, does exact floating point comparisons
326  bool operator==(const Quat &q) const
327  {
328  return (isExactlyEqual(mm[0],q.mm[0]) &&
329  isExactlyEqual(mm[1],q.mm[1]) &&
330  isExactlyEqual(mm[2],q.mm[2]) &&
331  isExactlyEqual(mm[3],q.mm[3]) );
332  }
333 
334  /// Test if "this" is equivalent to q with tolerance of eps value
335  bool eq(const Quat &q, T eps=1.0e-7) const
336  {
337  return isApproxEqual(mm[0],q.mm[0],eps) && isApproxEqual(mm[1],q.mm[1],eps) &&
338  isApproxEqual(mm[2],q.mm[2],eps) && isApproxEqual(mm[3],q.mm[3],eps) ;
339  } // trivial
340 
341  /// Add quaternion q to "this" quaternion, e.g. q += q1;
342  Quat& operator+=(const Quat &q)
343  {
344  mm[0] += q.mm[0];
345  mm[1] += q.mm[1];
346  mm[2] += q.mm[2];
347  mm[3] += q.mm[3];
348 
349  return *this;
350  }
351 
352  /// Subtract quaternion q from "this" quaternion, e.g. q -= q1;
353  Quat& operator-=(const Quat &q)
354  {
355  mm[0] -= q.mm[0];
356  mm[1] -= q.mm[1];
357  mm[2] -= q.mm[2];
358  mm[3] -= q.mm[3];
359 
360  return *this;
361  }
362 
363  /// Scale "this" quaternion by scalar, e.g. q *= scalar;
364  Quat& operator*=(T scalar)
365  {
366  mm[0] *= scalar;
367  mm[1] *= scalar;
368  mm[2] *= scalar;
369  mm[3] *= scalar;
370 
371  return *this;
372  }
373 
374  /// Return (this+q), e.g. q = q1 + q2;
375  Quat operator+(const Quat &q) const
376  {
377  return Quat<T>(mm[0]+q.mm[0], mm[1]+q.mm[1], mm[2]+q.mm[2], mm[3]+q.mm[3]);
378  }
379 
380  /// Return (this-q), e.g. q = q1 - q2;
381  Quat operator-(const Quat &q) const
382  {
383  return Quat<T>(mm[0]-q.mm[0], mm[1]-q.mm[1], mm[2]-q.mm[2], mm[3]-q.mm[3]);
384  }
385 
386  /// Return (this*q), e.g. q = q1 * q2;
387  Quat operator*(const Quat &q) const
388  {
389  Quat<T> prod;
390 
391  prod.mm[0] = mm[3]*q.mm[0] + mm[0]*q.mm[3] + mm[1]*q.mm[2] - mm[2]*q.mm[1];
392  prod.mm[1] = mm[3]*q.mm[1] + mm[1]*q.mm[3] + mm[2]*q.mm[0] - mm[0]*q.mm[2];
393  prod.mm[2] = mm[3]*q.mm[2] + mm[2]*q.mm[3] + mm[0]*q.mm[1] - mm[1]*q.mm[0];
394  prod.mm[3] = mm[3]*q.mm[3] - mm[0]*q.mm[0] - mm[1]*q.mm[1] - mm[2]*q.mm[2];
395 
396  return prod;
397 
398  }
399 
400  /// Assigns this to (this*q), e.g. q *= q1;
401  Quat operator*=(const Quat &q)
402  {
403  *this = *this * q;
404  return *this;
405  }
406 
407  /// Return (this*scalar), e.g. q = q1 * scalar;
408  Quat operator*(T scalar) const
409  {
410  return Quat<T>(mm[0]*scalar, mm[1]*scalar, mm[2]*scalar, mm[3]*scalar);
411  }
412 
413  /// Return (this/scalar), e.g. q = q1 / scalar;
414  Quat operator/(T scalar) const
415  {
416  return Quat<T>(mm[0]/scalar, mm[1]/scalar, mm[2]/scalar, mm[3]/scalar);
417  }
418 
419  /// Negation operator, e.g. q = -q;
420  Quat operator-() const
421  { return Quat<T>(-mm[0], -mm[1], -mm[2], -mm[3]); }
422 
423  /// this = q1 + q2
424  /// "this", q1 and q2 need not be distinct objects, e.g. q.add(q1,q);
425  Quat& add(const Quat &q1, const Quat &q2)
426  {
427  mm[0] = q1.mm[0] + q2.mm[0];
428  mm[1] = q1.mm[1] + q2.mm[1];
429  mm[2] = q1.mm[2] + q2.mm[2];
430  mm[3] = q1.mm[3] + q2.mm[3];
431 
432  return *this;
433  }
434 
435  /// this = q1 - q2
436  /// "this", q1 and q2 need not be distinct objects, e.g. q.sub(q1,q);
437  Quat& sub(const Quat &q1, const Quat &q2)
438  {
439  mm[0] = q1.mm[0] - q2.mm[0];
440  mm[1] = q1.mm[1] - q2.mm[1];
441  mm[2] = q1.mm[2] - q2.mm[2];
442  mm[3] = q1.mm[3] - q2.mm[3];
443 
444  return *this;
445  }
446 
447  /// this = q1 * q2
448  /// q1 and q2 must be distinct objects than "this", e.g. q.mult(q1,q2);
449  Quat& mult(const Quat &q1, const Quat &q2)
450  {
451  mm[0] = q1.mm[3]*q2.mm[0] + q1.mm[0]*q2.mm[3] +
452  q1.mm[1]*q2.mm[2] - q1.mm[2]*q2.mm[1];
453  mm[1] = q1.mm[3]*q2.mm[1] + q1.mm[1]*q2.mm[3] +
454  q1.mm[2]*q2.mm[0] - q1.mm[0]*q2.mm[2];
455  mm[2] = q1.mm[3]*q2.mm[2] + q1.mm[2]*q2.mm[3] +
456  q1.mm[0]*q2.mm[1] - q1.mm[1]*q2.mm[0];
457  mm[3] = q1.mm[3]*q2.mm[3] - q1.mm[0]*q2.mm[0] -
458  q1.mm[1]*q2.mm[1] - q1.mm[2]*q2.mm[2];
459 
460  return *this;
461  }
462 
463  /// this = scalar*q, q need not be distinct object than "this",
464  /// e.g. q.scale(1.5,q1);
465  Quat& scale(T scale, const Quat &q)
466  {
467  mm[0] = scale * q.mm[0];
468  mm[1] = scale * q.mm[1];
469  mm[2] = scale * q.mm[2];
470  mm[3] = scale * q.mm[3];
471 
472  return *this;
473  }
474 
475  /// Dot product
476  T dot(const Quat &q) const
477  {
478  return (mm[0]*q.mm[0] + mm[1]*q.mm[1] + mm[2]*q.mm[2] + mm[3]*q.mm[3]);
479  }
480 
481  /// Return the quaternion rate corrsponding to the angular velocity omega
482  /// and "this" current rotation
483  Quat derivative(const Vec3<T>& omega) const
484  {
485  return Quat<T>( +w()*omega.x() -z()*omega.y() +y()*omega.z() ,
486  +z()*omega.x() +w()*omega.y() -x()*omega.z() ,
487  -y()*omega.x() +x()*omega.y() +w()*omega.z() ,
488  -x()*omega.x() -y()*omega.y() -z()*omega.z() );
489  }
490 
491  /// this = normalized this
492  bool normalize(T eps = T(1.0e-8))
493  {
494  T d = T(sqrt(mm[0]*mm[0] + mm[1]*mm[1] + mm[2]*mm[2] + mm[3]*mm[3]));
495  if( isApproxEqual(d, T(0.0), eps) ) return false;
496  *this *= ( T(1)/d );
497  return true;
498  }
499 
500  /// this = normalized this
501  Quat unit() const
502  {
503  T d = sqrt(mm[0]*mm[0] + mm[1]*mm[1] + mm[2]*mm[2] + mm[3]*mm[3]);
504  if( isExactlyEqual(d , T(0.0) ) )
506  "Normalizing degenerate quaternion");
507  return *this / d;
508  }
509 
510  /// returns inverse of this
511  Quat inverse(T tolerance = T(0)) const
512  {
513  T d = mm[0]*mm[0] + mm[1]*mm[1] + mm[2]*mm[2] + mm[3]*mm[3];
514  if( isApproxEqual(d, T(0.0), tolerance) )
516  "Cannot invert degenerate quaternion");
517  Quat result = *this/-d;
518  result.mm[3] = -result.mm[3];
519  return result;
520  }
521 
522 
523  /// Return the conjugate of "this", same as invert without
524  /// unit quaternion test
525  Quat conjugate() const
526  {
527  return Quat<T>(-mm[0], -mm[1], -mm[2], mm[3]);
528  }
529 
530  /// Return rotated vector by "this" quaternion
531  Vec3<T> rotateVector(const Vec3<T> &v) const
532  {
533  Mat3<T> m(*this);
534  return m.transform(v);
535  }
536 
537  /// Predefined constants, e.g. Quat q = Quat::identity();
538  static Quat zero() { return Quat<T>(0,0,0,0); }
539  static Quat identity() { return Quat<T>(0,0,0,1); }
540 
541  /// @return string representation of Classname
542  std::string str() const
543  {
544  std::ostringstream buffer;
545 
546  buffer << "[";
547 
548  // For each column
549  for (unsigned j(0); j < 4; j++) {
550  if (j) buffer << ", ";
551  buffer << mm[j];
552  }
553 
554  buffer << "]";
555 
556  return buffer.str();
557  }
558 
559  /// Output to the stream, e.g. std::cout << q << std::endl;
560  friend std::ostream& operator<<(std::ostream &stream, const Quat &q)
561  {
562  stream << q.str();
563  return stream;
564  }
565 
566  friend Quat slerp<>(const Quat &q1, const Quat &q2, T t, T tolerance);
567 
568  void write(std::ostream& os) const { os.write(static_cast<char*>(&mm), sizeof(T) * 4); }
569  void read(std::istream& is) { is.read(static_cast<char*>(&mm), sizeof(T) * 4); }
570 
571 protected:
572  T mm[4];
573 };
574 
575 /// Multiply each element of the given quaternion by @a scalar and return the result.
576 template <typename S, typename T>
577 Quat<T> operator*(S scalar, const Quat<T> &q) { return q*scalar; }
578 
579 
580 /// @brief Interpolate between m1 and m2.
581 /// Converts to quaternion form and uses slerp
582 /// m1 and m2 must be rotation matrices!
583 template <typename T, typename T0>
584 Mat3<T> slerp(const Mat3<T0> &m1, const Mat3<T0> &m2, T t)
585 {
586  using MatType = Mat3<T>;
587 
588  Quat<T> q1(m1);
589  Quat<T> q2(m2);
590 
591  if (q1.dot(q2) < 0) q2 *= -1;
592 
593  Quat<T> qslerp = slerp<T>(q1, q2, static_cast<T>(t));
594  MatType m = rotation<MatType>(qslerp);
595  return m;
596 }
597 
598 
599 
600 /// Interpolate between m1 and m4 by converting m1 ... m4 into
601 /// quaternions and treating them as control points of a Bezier
602 /// curve using slerp in place of lerp in the De Castlejeau evaluation
603 /// algorithm. Just like a cubic Bezier curve, this will interpolate
604 /// m1 at t = 0 and m4 at t = 1 but in general will not pass through
605 /// m2 and m3. Unlike a standard Bezier curve this curve will not have
606 /// the convex hull property.
607 /// m1 ... m4 must be rotation matrices!
608 template <typename T, typename T0>
609 Mat3<T> bezLerp(const Mat3<T0> &m1, const Mat3<T0> &m2,
610  const Mat3<T0> &m3, const Mat3<T0> &m4,
611  T t)
612 {
613  Mat3<T> m00, m01, m02, m10, m11;
614 
615  m00 = slerp(m1, m2, t);
616  m01 = slerp(m2, m3, t);
617  m02 = slerp(m3, m4, t);
618 
619  m10 = slerp(m00, m01, t);
620  m11 = slerp(m01, m02, t);
621 
622  return slerp(m10, m11, t);
623 }
624 
627 
628 #if OPENVDB_ABI_VERSION_NUMBER >= 8
631 #endif
632 
633 } // namespace math
634 
635 
636 template<> inline math::Quats zeroVal<math::Quats >() { return math::Quats::zero(); }
637 template<> inline math::Quatd zeroVal<math::Quatd >() { return math::Quatd::zero(); }
638 
639 } // namespace OPENVDB_VERSION_NAME
640 } // namespace openvdb
641 
642 #endif //OPENVDB_MATH_QUAT_H_HAS_BEEN_INCLUDED
Definition: Exceptions.h:56
std::string str() const
Definition: Quat.h:542
bool isExactlyEqual(const T0 &a, const T1 &b)
Return true if a is exactly equal to b.
Definition: Math.h:444
Mat3< T > bezLerp(const Mat3< T0 > &m1, const Mat3< T0 > &m2, const Mat3< T0 > &m3, const Mat3< T0 > &m4, T t)
Definition: Quat.h:609
T & x()
Reference to the component, e.g. q.x() = 4.5f;.
Definition: Quat.h:218
#define OPENVDB_THROW(exception, message)
Definition: Exceptions.h:74
void write(std::ostream &os) const
Definition: Quat.h:568
General-purpose arithmetic and comparison routines, most of which accept arbitrary value types (or at...
Quat(const Vec3< T > &axis, T angle)
Definition: Quat.h:137
T & z()
Definition: Vec3.h:91
T & y()
Definition: Vec3.h:90
RotationOrder
Definition: Math.h:911
Definition: Mat.h:186
Quat(math::Axis axis, T angle)
Constructor given rotation as axis and angle.
Definition: Quat.h:152
Mat3< T > slerp(const Mat3< T0 > &m1, const Mat3< T0 > &m2, T t)
Interpolate between m1 and m2. Converts to quaternion form and uses slerp m1 and m2 must be rotation ...
Definition: Quat.h:584
Quat & operator+=(const Quat &q)
Add quaternion q to "this" quaternion, e.g. q += q1;.
Definition: Quat.h:342
bool eq(const Quat &q, T eps=1.0e-7) const
Test if "this" is equivalent to q with tolerance of eps value.
Definition: Quat.h:335
Quat operator*(T scalar) const
Return (this*scalar), e.g. q = q1 * scalar;.
Definition: Quat.h:408
bool isUnitary(const MatType &m)
Determine if a matrix is unitary (i.e., rotation or reflection).
Definition: Mat.h:911
Quat & mult(const Quat &q1, const Quat &q2)
Definition: Quat.h:449
T operator[](int i) const
Array style constant reference to the components, e.g. float f = q[1];.
Definition: Quat.h:236
T dot(const Quat &q) const
Dot product.
Definition: Quat.h:476
static unsigned numElements()
Definition: Quat.h:230
bool operator==(const Quat &q) const
Equality operator, does exact floating point comparisons.
Definition: Quat.h:326
T value_type
Definition: Quat.h:81
T z() const
Definition: Quat.h:226
Quat(T *a)
Constructor with array argument, e.g. float a[4]; Quatf q(a);.
Definition: Quat.h:126
T x() const
Get the component, e.g. float f = q.w();.
Definition: Quat.h:224
Quat< T > operator*(S scalar, const Quat< T > &q)
Multiply each element of the given quaternion by scalar and return the result.
Definition: Quat.h:577
Axis
Definition: Math.h:904
T w() const
Definition: Quat.h:227
T & operator()(int i)
Alternative indexed reference to the elements.
Definition: Quat.h:243
Quat & setAxisAngle(const Vec3< T > &axis, T angle)
Definition: Quat.h:292
Quat & operator*=(T scalar)
Scale "this" quaternion by scalar, e.g. q *= scalar;.
Definition: Quat.h:364
Quat(const Mat3< T1 > &rot)
Constructor given a rotation matrix.
Definition: Quat.h:165
Quat & setIdentity()
Set "this" vector to identity.
Definition: Quat.h:314
T & w()
Definition: Quat.h:221
static Quat zero()
Predefined constants, e.g. Quat q = Quat::identity();.
Definition: Quat.h:538
Quat unit() const
this = normalized this
Definition: Quat.h:501
Vec3< T > axis() const
Return axis of rotation.
Definition: Quat.h:264
Definition: Math.h:907
Quat(T x, T y, T z, T w)
Constructor with four arguments, e.g. Quatf q(1,2,3,4);.
Definition: Quat.h:116
T mm[4]
Definition: Quat.h:572
T angle(const Vec2< T > &v1, const Vec2< T > &v2)
Definition: Vec2.h:450
Vec3< T > rotateVector(const Vec3< T > &v) const
Return rotated vector by "this" quaternion.
Definition: Quat.h:531
Definition: Exceptions.h:13
T y() const
Definition: Quat.h:225
static Quat identity()
Definition: Quat.h:539
T ValueType
Definition: Quat.h:82
Quat operator*=(const Quat &q)
Assigns this to (this*q), e.g. q *= q1;.
Definition: Quat.h:401
Quat inverse(T tolerance=T(0)) const
returns inverse of this
Definition: Quat.h:511
T trace() const
Trace of matrix.
Definition: Mat3.h:502
Quat & setZero()
Set "this" vector to zero.
Definition: Quat.h:307
Quat operator-(const Quat &q) const
Return (this-q), e.g. q = q1 - q2;.
Definition: Quat.h:381
T & operator[](int i)
Array style reference to the components, e.g. q[3] = 1.34f;.
Definition: Quat.h:233
Vec3< typename MatType::value_type > eulerAngles(const MatType &mat, RotationOrder rotationOrder, typename MatType::value_type eps=static_cast< typename MatType::value_type >(1.0e-8))
Return the Euler angles composing the given rotation matrix.
Definition: Mat.h:355
3x3 matrix class.
Definition: Mat3.h:28
MatType scale(const Vec3< typename MatType::value_type > &s)
Return a matrix that scales by s.
Definition: Mat.h:637
Quat & sub(const Quat &q1, const Quat &q2)
Definition: Quat.h:437
Definition: Mat.h:187
Quat & add(const Quat &q1, const Quat &q2)
Definition: Quat.h:425
T operator()(int i) const
Alternative indexed constant reference to the elements,.
Definition: Quat.h:246
T & z()
Definition: Quat.h:220
bool isApproxEqual(const Type &a, const Type &b, const Type &tolerance)
Return true if a is equal to b to within the given tolerance.
Definition: Math.h:407
T & y()
Definition: Quat.h:219
Quat operator/(T scalar) const
Return (this/scalar), e.g. q = q1 / scalar;.
Definition: Quat.h:414
T det() const
Determinant of matrix.
Definition: Mat3.h:493
T & x()
Reference to the component, e.g. v.x() = 4.5f;.
Definition: Vec3.h:89
Quat & operator-=(const Quat &q)
Subtract quaternion q from "this" quaternion, e.g. q -= q1;.
Definition: Quat.h:353
Quat conjugate() const
Definition: Quat.h:525
Quat & scale(T scale, const Quat &q)
Definition: Quat.h:465
bool normalize(T eps=T(1.0e-8))
this = normalized this
Definition: Quat.h:492
Definition: Math.h:906
Quat & init()
"this" quaternion gets initialized to identity, same as setIdentity()
Definition: Quat.h:288
Quat operator-() const
Negation operator, e.g. q = -q;.
Definition: Quat.h:420
Quat & init(T x, T y, T z, T w)
"this" quaternion gets initialized to [x, y, z, w]
Definition: Quat.h:281
#define OPENVDB_VERSION_NAME
The version namespace name for this library version.
Definition: version.h.in:116
Quat operator+(const Quat &q) const
Return (this+q), e.g. q = q1 + q2;.
Definition: Quat.h:375
void read(std::istream &is)
Definition: Quat.h:569
T angle() const
Return angle of rotation.
Definition: Quat.h:249
Vec3< T > eulerAngles(RotationOrder rotationOrder) const
Returns vector of x,y,z rotational components.
Definition: Quat.h:322
friend std::ostream & operator<<(std::ostream &stream, const Quat &q)
Output to the stream, e.g. std::cout << q << std::endl;.
Definition: Quat.h:560
Quat operator*(const Quat &q) const
Return (this*q), e.g. q = q1 * q2;.
Definition: Quat.h:387
Definition: Math.h:905
Vec3< T0 > transform(const Vec3< T0 > &v) const
Definition: Mat3.h:519
Quat derivative(const Vec3< T > &omega) const
Definition: Quat.h:483
#define OPENVDB_USE_VERSION_NAMESPACE
Definition: version.h.in:202
#define OPENVDB_IS_POD(Type)
Definition: Math.h:55