OpenVDB  9.0.1
Vec4.h
Go to the documentation of this file.
1 // Copyright Contributors to the OpenVDB Project
2 // SPDX-License-Identifier: MPL-2.0
3 
4 #ifndef OPENVDB_MATH_VEC4_HAS_BEEN_INCLUDED
5 #define OPENVDB_MATH_VEC4_HAS_BEEN_INCLUDED
6 
7 #include <openvdb/Exceptions.h>
8 #include "Math.h"
9 #include "Tuple.h"
10 #include "Vec3.h"
11 #include <algorithm>
12 #include <cmath>
13 #include <type_traits>
14 
15 
16 namespace openvdb {
18 namespace OPENVDB_VERSION_NAME {
19 namespace math {
20 
21 template<typename T> class Mat3;
22 
23 template<typename T>
24 class Vec4: public Tuple<4, T>
25 {
26 public:
27  using value_type = T;
28  using ValueType = T;
29 
30  /// Trivial constructor, the vector is NOT initialized
31 #if OPENVDB_ABI_VERSION_NUMBER >= 8
32  /// @note destructor, copy constructor, assignment operator and
33  /// move constructor are left to be defined by the compiler (default)
34  Vec4() = default;
35 #else
36  Vec4() {}
37 #endif
38 
39  /// @brief Construct a vector all of whose components have the given value.
40  explicit Vec4(T val) { this->mm[0] = this->mm[1] = this->mm[2] = this->mm[3] = val; }
41 
42  /// Constructor with four arguments, e.g. Vec4f v(1,2,3,4);
43  Vec4(T x, T y, T z, T w)
44  {
45  this->mm[0] = x;
46  this->mm[1] = y;
47  this->mm[2] = z;
48  this->mm[3] = w;
49  }
50 
51  /// Constructor with array argument, e.g. float a[4]; Vec4f v(a);
52  template <typename Source>
53  Vec4(Source *a)
54  {
55  this->mm[0] = static_cast<T>(a[0]);
56  this->mm[1] = static_cast<T>(a[1]);
57  this->mm[2] = static_cast<T>(a[2]);
58  this->mm[3] = static_cast<T>(a[3]);
59  }
60 
61  /// Conversion constructor
62  template<typename Source>
63  explicit Vec4(const Tuple<4, Source> &v)
64  {
65  this->mm[0] = static_cast<T>(v[0]);
66  this->mm[1] = static_cast<T>(v[1]);
67  this->mm[2] = static_cast<T>(v[2]);
68  this->mm[3] = static_cast<T>(v[3]);
69  }
70 
71  /// @brief Construct a vector all of whose components have the given value,
72  /// which may be of an arithmetic type different from this vector's value type.
73  /// @details Type conversion warnings are suppressed.
74  template<typename Other>
75  explicit Vec4(Other val,
76  typename std::enable_if<std::is_arithmetic<Other>::value, Conversion>::type = Conversion{})
77  {
78  this->mm[0] = this->mm[1] = this->mm[2] = this->mm[3] = static_cast<T>(val);
79  }
80 
81  /// Reference to the component, e.g. v.x() = 4.5f;
82  T& x() { return this->mm[0]; }
83  T& y() { return this->mm[1]; }
84  T& z() { return this->mm[2]; }
85  T& w() { return this->mm[3]; }
86 
87  /// Get the component, e.g. float f = v.y();
88  T x() const { return this->mm[0]; }
89  T y() const { return this->mm[1]; }
90  T z() const { return this->mm[2]; }
91  T w() const { return this->mm[3]; }
92 
93  T* asPointer() { return this->mm; }
94  const T* asPointer() const { return this->mm; }
95 
96  /// Alternative indexed reference to the elements
97  T& operator()(int i) { return this->mm[i]; }
98 
99  /// Alternative indexed constant reference to the elements,
100  T operator()(int i) const { return this->mm[i]; }
101 
102  /// Returns a Vec3 with the first three elements of the Vec4.
103  Vec3<T> getVec3() const { return Vec3<T>(this->mm[0], this->mm[1], this->mm[2]); }
104 
105  /// "this" vector gets initialized to [x, y, z, w],
106  /// calling v.init(); has same effect as calling v = Vec4::zero();
107  const Vec4<T>& init(T x=0, T y=0, T z=0, T w=0)
108  {
109  this->mm[0] = x; this->mm[1] = y; this->mm[2] = z; this->mm[3] = w;
110  return *this;
111  }
112 
113  /// Set "this" vector to zero
114  const Vec4<T>& setZero()
115  {
116  this->mm[0] = 0; this->mm[1] = 0; this->mm[2] = 0; this->mm[3] = 0;
117  return *this;
118  }
119 
120  /// Assignment operator
121  template<typename Source>
122  const Vec4<T>& operator=(const Vec4<Source> &v)
123  {
124  // note: don't static_cast because that suppresses warnings
125  this->mm[0] = v[0];
126  this->mm[1] = v[1];
127  this->mm[2] = v[2];
128  this->mm[3] = v[3];
129 
130  return *this;
131  }
132 
133  /// Test if "this" vector is equivalent to vector v with tolerance
134  /// of eps
135  bool eq(const Vec4<T> &v, T eps = static_cast<T>(1.0e-8)) const
136  {
137  return isApproxEqual(this->mm[0], v.mm[0], eps) &&
138  isApproxEqual(this->mm[1], v.mm[1], eps) &&
139  isApproxEqual(this->mm[2], v.mm[2], eps) &&
140  isApproxEqual(this->mm[3], v.mm[3], eps);
141  }
142 
143  /// Negation operator, for e.g. v1 = -v2;
145  {
146  return Vec4<T>(
147  -this->mm[0],
148  -this->mm[1],
149  -this->mm[2],
150  -this->mm[3]);
151  }
152 
153  /// this = v1 + v2
154  /// "this", v1 and v2 need not be distinct objects, e.g. v.add(v1,v);
155  template <typename T0, typename T1>
156  const Vec4<T>& add(const Vec4<T0> &v1, const Vec4<T1> &v2)
157  {
158  this->mm[0] = v1[0] + v2[0];
159  this->mm[1] = v1[1] + v2[1];
160  this->mm[2] = v1[2] + v2[2];
161  this->mm[3] = v1[3] + v2[3];
162 
163  return *this;
164  }
165 
166 
167  /// this = v1 - v2
168  /// "this", v1 and v2 need not be distinct objects, e.g. v.sub(v1,v);
169  template <typename T0, typename T1>
170  const Vec4<T>& sub(const Vec4<T0> &v1, const Vec4<T1> &v2)
171  {
172  this->mm[0] = v1[0] - v2[0];
173  this->mm[1] = v1[1] - v2[1];
174  this->mm[2] = v1[2] - v2[2];
175  this->mm[3] = v1[3] - v2[3];
176 
177  return *this;
178  }
179 
180  /// this = scalar*v, v need not be a distinct object from "this",
181  /// e.g. v.scale(1.5,v1);
182  template <typename T0, typename T1>
183  const Vec4<T>& scale(T0 scale, const Vec4<T1> &v)
184  {
185  this->mm[0] = scale * v[0];
186  this->mm[1] = scale * v[1];
187  this->mm[2] = scale * v[2];
188  this->mm[3] = scale * v[3];
189 
190  return *this;
191  }
192 
193  template <typename T0, typename T1>
194  const Vec4<T> &div(T0 scalar, const Vec4<T1> &v)
195  {
196  this->mm[0] = v[0] / scalar;
197  this->mm[1] = v[1] / scalar;
198  this->mm[2] = v[2] / scalar;
199  this->mm[3] = v[3] / scalar;
200 
201  return *this;
202  }
203 
204  /// Dot product
205  T dot(const Vec4<T> &v) const
206  {
207  return (this->mm[0]*v.mm[0] + this->mm[1]*v.mm[1]
208  + this->mm[2]*v.mm[2] + this->mm[3]*v.mm[3]);
209  }
210 
211  /// Length of the vector
212  T length() const
213  {
214  return std::sqrt(
215  this->mm[0]*this->mm[0] +
216  this->mm[1]*this->mm[1] +
217  this->mm[2]*this->mm[2] +
218  this->mm[3]*this->mm[3]);
219  }
220 
221 
222  /// Squared length of the vector, much faster than length() as it
223  /// does not involve square root
224  T lengthSqr() const
225  {
226  return (this->mm[0]*this->mm[0] + this->mm[1]*this->mm[1]
227  + this->mm[2]*this->mm[2] + this->mm[3]*this->mm[3]);
228  }
229 
230  /// Return a reference to itself after the exponent has been
231  /// applied to all the vector components.
232  inline const Vec4<T>& exp()
233  {
234  this->mm[0] = std::exp(this->mm[0]);
235  this->mm[1] = std::exp(this->mm[1]);
236  this->mm[2] = std::exp(this->mm[2]);
237  this->mm[3] = std::exp(this->mm[3]);
238  return *this;
239  }
240 
241  /// Return a reference to itself after log has been
242  /// applied to all the vector components.
243  inline const Vec4<T>& log()
244  {
245  this->mm[0] = std::log(this->mm[0]);
246  this->mm[1] = std::log(this->mm[1]);
247  this->mm[2] = std::log(this->mm[2]);
248  this->mm[3] = std::log(this->mm[3]);
249  return *this;
250  }
251 
252  /// Return the sum of all the vector components.
253  inline T sum() const
254  {
255  return this->mm[0] + this->mm[1] + this->mm[2] + this->mm[3];
256  }
257 
258  /// Return the product of all the vector components.
259  inline T product() const
260  {
261  return this->mm[0] * this->mm[1] * this->mm[2] * this->mm[3];
262  }
263 
264  /// this = normalized this
265  bool normalize(T eps = static_cast<T>(1.0e-8))
266  {
267  T d = length();
268  if (isApproxEqual(d, T(0), eps)) {
269  return false;
270  }
271  *this *= (T(1) / d);
272  return true;
273  }
274 
275  /// return normalized this, throws if null vector
276  Vec4<T> unit(T eps=0) const
277  {
278  T d;
279  return unit(eps, d);
280  }
281 
282  /// return normalized this and length, throws if null vector
283  Vec4<T> unit(T eps, T& len) const
284  {
285  len = length();
286  if (isApproxEqual(len, T(0), eps)) {
287  throw ArithmeticError("Normalizing null 4-vector");
288  }
289  return *this / len;
290  }
291 
292  /// return normalized this, or (1, 0, 0, 0) if this is null vector
294  {
295  T l2 = lengthSqr();
296  return l2 ? *this / static_cast<T>(sqrt(l2)) : Vec4<T>(1, 0, 0, 0);
297  }
298 
299  /// Multiply each element of this vector by @a scalar.
300  template <typename S>
301  const Vec4<T> &operator*=(S scalar)
302  {
303  this->mm[0] *= scalar;
304  this->mm[1] *= scalar;
305  this->mm[2] *= scalar;
306  this->mm[3] *= scalar;
307  return *this;
308  }
309 
310  /// Multiply each element of this vector by the corresponding element of the given vector.
311  template <typename S>
312  const Vec4<T> &operator*=(const Vec4<S> &v1)
313  {
314  this->mm[0] *= v1[0];
315  this->mm[1] *= v1[1];
316  this->mm[2] *= v1[2];
317  this->mm[3] *= v1[3];
318 
319  return *this;
320  }
321 
322  /// Divide each element of this vector by @a scalar.
323  template <typename S>
324  const Vec4<T> &operator/=(S scalar)
325  {
326  this->mm[0] /= scalar;
327  this->mm[1] /= scalar;
328  this->mm[2] /= scalar;
329  this->mm[3] /= scalar;
330  return *this;
331  }
332 
333  /// Divide each element of this vector by the corresponding element of the given vector.
334  template <typename S>
335  const Vec4<T> &operator/=(const Vec4<S> &v1)
336  {
337  this->mm[0] /= v1[0];
338  this->mm[1] /= v1[1];
339  this->mm[2] /= v1[2];
340  this->mm[3] /= v1[3];
341  return *this;
342  }
343 
344  /// Add @a scalar to each element of this vector.
345  template <typename S>
346  const Vec4<T> &operator+=(S scalar)
347  {
348  this->mm[0] += scalar;
349  this->mm[1] += scalar;
350  this->mm[2] += scalar;
351  this->mm[3] += scalar;
352  return *this;
353  }
354 
355  /// Add each element of the given vector to the corresponding element of this vector.
356  template <typename S>
357  const Vec4<T> &operator+=(const Vec4<S> &v1)
358  {
359  this->mm[0] += v1[0];
360  this->mm[1] += v1[1];
361  this->mm[2] += v1[2];
362  this->mm[3] += v1[3];
363  return *this;
364  }
365 
366  /// Subtract @a scalar from each element of this vector.
367  template <typename S>
368  const Vec4<T> &operator-=(S scalar)
369  {
370  this->mm[0] -= scalar;
371  this->mm[1] -= scalar;
372  this->mm[2] -= scalar;
373  this->mm[3] -= scalar;
374  return *this;
375  }
376 
377  /// Subtract each element of the given vector from the corresponding element of this vector.
378  template <typename S>
379  const Vec4<T> &operator-=(const Vec4<S> &v1)
380  {
381  this->mm[0] -= v1[0];
382  this->mm[1] -= v1[1];
383  this->mm[2] -= v1[2];
384  this->mm[3] -= v1[3];
385  return *this;
386  }
387 
388  // Number of cols, rows, elements
389  static unsigned numRows() { return 1; }
390  static unsigned numColumns() { return 4; }
391  static unsigned numElements() { return 4; }
392 
393  /// Predefined constants, e.g. Vec4f v = Vec4f::xNegAxis();
394  static Vec4<T> zero() { return Vec4<T>(0, 0, 0, 0); }
395  static Vec4<T> origin() { return Vec4<T>(0, 0, 0, 1); }
396  static Vec4<T> ones() { return Vec4<T>(1, 1, 1, 1); }
397 };
398 
399 /// Equality operator, does exact floating point comparisons
400 template <typename T0, typename T1>
401 inline bool operator==(const Vec4<T0> &v0, const Vec4<T1> &v1)
402 {
403  return
404  isExactlyEqual(v0[0], v1[0]) &&
405  isExactlyEqual(v0[1], v1[1]) &&
406  isExactlyEqual(v0[2], v1[2]) &&
407  isExactlyEqual(v0[3], v1[3]);
408 }
409 
410 /// Inequality operator, does exact floating point comparisons
411 template <typename T0, typename T1>
412 inline bool operator!=(const Vec4<T0> &v0, const Vec4<T1> &v1) { return !(v0==v1); }
413 
414 /// Multiply each element of the given vector by @a scalar and return the result.
415 template <typename S, typename T>
417 { return v*scalar; }
418 
419 /// Multiply each element of the given vector by @a scalar and return the result.
420 template <typename S, typename T>
422 {
424  result *= scalar;
425  return result;
426 }
427 
428 /// Multiply corresponding elements of @a v0 and @a v1 and return the result.
429 template <typename T0, typename T1>
431 {
432  Vec4<typename promote<T0, T1>::type> result(v0[0]*v1[0],
433  v0[1]*v1[1],
434  v0[2]*v1[2],
435  v0[3]*v1[3]);
436  return result;
437 }
438 
439 /// Divide @a scalar by each element of the given vector and return the result.
440 template <typename S, typename T>
442 {
443  return Vec4<typename promote<S, T>::type>(scalar/v[0],
444  scalar/v[1],
445  scalar/v[2],
446  scalar/v[3]);
447 }
448 
449 /// Divide each element of the given vector by @a scalar and return the result.
450 template <typename S, typename T>
452 {
454  result /= scalar;
455  return result;
456 }
457 
458 /// Divide corresponding elements of @a v0 and @a v1 and return the result.
459 template <typename T0, typename T1>
461 {
463  result(v0[0]/v1[0], v0[1]/v1[1], v0[2]/v1[2], v0[3]/v1[3]);
464  return result;
465 }
466 
467 /// Add corresponding elements of @a v0 and @a v1 and return the result.
468 template <typename T0, typename T1>
470 {
472  result += v1;
473  return result;
474 }
475 
476 /// Add @a scalar to each element of the given vector and return the result.
477 template <typename S, typename T>
479 {
481  result += scalar;
482  return result;
483 }
484 
485 /// Subtract corresponding elements of @a v0 and @a v1 and return the result.
486 template <typename T0, typename T1>
488 {
490  result -= v1;
491  return result;
492 }
493 
494 /// Subtract @a scalar from each element of the given vector and return the result.
495 template <typename S, typename T>
497 {
499  result -= scalar;
500  return result;
501 }
502 
503 template <typename T>
504 inline bool
505 isApproxEqual(const Vec4<T>& a, const Vec4<T>& b)
506 {
507  return a.eq(b);
508 }
509 template <typename T>
510 inline bool
511 isApproxEqual(const Vec4<T>& a, const Vec4<T>& b, const Vec4<T>& eps)
512 {
513  return isApproxEqual(a[0], b[0], eps[0]) &&
514  isApproxEqual(a[1], b[1], eps[1]) &&
515  isApproxEqual(a[2], b[2], eps[2]) &&
516  isApproxEqual(a[3], b[3], eps[3]);
517 }
518 
519 template<typename T>
520 inline Vec4<T>
521 Abs(const Vec4<T>& v)
522 {
523  return Vec4<T>(Abs(v[0]), Abs(v[1]), Abs(v[2]), Abs(v[3]));
524 }
525 
526 /// @remark We are switching to a more explicit name because the semantics
527 /// are different from std::min/max. In that case, the function returns a
528 /// reference to one of the objects based on a comparator. Here, we must
529 /// fabricate a new object which might not match either of the inputs.
530 
531 /// Return component-wise minimum of the two vectors.
532 template <typename T>
533 inline Vec4<T> minComponent(const Vec4<T> &v1, const Vec4<T> &v2)
534 {
535  return Vec4<T>(
536  std::min(v1.x(), v2.x()),
537  std::min(v1.y(), v2.y()),
538  std::min(v1.z(), v2.z()),
539  std::min(v1.w(), v2.w()));
540 }
541 
542 /// Return component-wise maximum of the two vectors.
543 template <typename T>
544 inline Vec4<T> maxComponent(const Vec4<T> &v1, const Vec4<T> &v2)
545 {
546  return Vec4<T>(
547  std::max(v1.x(), v2.x()),
548  std::max(v1.y(), v2.y()),
549  std::max(v1.z(), v2.z()),
550  std::max(v1.w(), v2.w()));
551 }
552 
553 /// @brief Return a vector with the exponent applied to each of
554 /// the components of the input vector.
555 template <typename T>
556 inline Vec4<T> Exp(Vec4<T> v) { return v.exp(); }
557 
558 /// @brief Return a vector with log applied to each of
559 /// the components of the input vector.
560 template <typename T>
561 inline Vec4<T> Log(Vec4<T> v) { return v.log(); }
562 
567 
568 #if OPENVDB_ABI_VERSION_NUMBER >= 8
573 #endif
574 
575 } // namespace math
576 } // namespace OPENVDB_VERSION_NAME
577 } // namespace openvdb
578 
579 #endif // OPENVDB_MATH_VEC4_HAS_BEEN_INCLUDED
T lengthSqr() const
Definition: Vec4.h:224
const Vec4< T > & operator+=(const Vec4< S > &v1)
Add each element of the given vector to the corresponding element of this vector. ...
Definition: Vec4.h:357
Vec4< T > minComponent(const Vec4< T > &v1, const Vec4< T > &v2)
Return component-wise minimum of the two vectors.
Definition: Vec4.h:533
Definition: Exceptions.h:56
const Vec4< T > & operator/=(S scalar)
Divide each element of this vector by scalar.
Definition: Vec4.h:324
T value_type
Definition: Vec4.h:27
const Vec4< T > & operator=(const Vec4< Source > &v)
Assignment operator.
Definition: Vec4.h:122
Vec4(Source *a)
Constructor with array argument, e.g. float a[4]; Vec4f v(a);.
Definition: Vec4.h:53
T x() const
Get the component, e.g. float f = v.y();.
Definition: Vec4.h:88
Vec4< typename promote< S, T >::type > operator-(const Vec4< T > &v, S scalar)
Subtract scalar from each element of the given vector and return the result.
Definition: Vec4.h:496
bool isExactlyEqual(const T0 &a, const T1 &b)
Return true if a is exactly equal to b.
Definition: Math.h:444
Definition: Tuple.h:29
T y() const
Definition: Vec4.h:89
T ValueType
Definition: Vec4.h:28
bool operator!=(const Vec4< T0 > &v0, const Vec4< T1 > &v1)
Inequality operator, does exact floating point comparisons.
Definition: Vec4.h:412
bool eq(const Vec4< T > &v, T eps=static_cast< T >(1.0e-8)) const
Definition: Vec4.h:135
General-purpose arithmetic and comparison routines, most of which accept arbitrary value types (or at...
T product() const
Return the product of all the vector components.
Definition: Vec4.h:259
Vec4< typename promote< T0, T1 >::type > operator*(const Vec4< T0 > &v0, const Vec4< T1 > &v1)
Multiply corresponding elements of v0 and v1 and return the result.
Definition: Vec4.h:430
const T * asPointer() const
Definition: Vec4.h:94
T sum() const
Return the sum of all the vector components.
Definition: Vec4.h:253
Vec4< T > unit(T eps, T &len) const
return normalized this and length, throws if null vector
Definition: Vec4.h:283
Vec4(T val)
Construct a vector all of whose components have the given value.
Definition: Vec4.h:40
Vec3< T > getVec3() const
Returns a Vec3 with the first three elements of the Vec4.
Definition: Vec4.h:103
const Vec4< T > & exp()
Definition: Vec4.h:232
const Vec4< T > & operator-=(S scalar)
Subtract scalar from each element of this vector.
Definition: Vec4.h:368
const std::enable_if<!VecTraits< T >::IsVec, T >::type & max(const T &a, const T &b)
Definition: Composite.h:107
static Vec4< T > origin()
Definition: Vec4.h:395
bool isApproxEqual(const Vec4< T > &a, const Vec4< T > &b, const Vec4< T > &eps)
Definition: Vec4.h:511
T operator()(int i) const
Alternative indexed constant reference to the elements,.
Definition: Vec4.h:100
MatType unit(const MatType &mat, typename MatType::value_type eps=1.0e-8)
Return a copy of the given matrix with its upper 3×3 rows normalized.
Definition: Mat.h:670
const Vec4< T > & operator*=(S scalar)
Multiply each element of this vector by scalar.
Definition: Vec4.h:301
T & z()
Definition: Vec4.h:84
Vec4(Other val, typename std::enable_if< std::is_arithmetic< Other >::value, Conversion >::type=Conversion{})
Construct a vector all of whose components have the given value, which may be of an arithmetic type d...
Definition: Vec4.h:75
static Vec4< T > zero()
Predefined constants, e.g. Vec4f v = Vec4f::xNegAxis();.
Definition: Vec4.h:394
static Vec4< T > ones()
Definition: Vec4.h:396
const Vec4< T > & init(T x=0, T y=0, T z=0, T w=0)
Definition: Vec4.h:107
Definition: Mat4.h:24
const Vec4< T > & add(const Vec4< T0 > &v1, const Vec4< T1 > &v2)
Definition: Vec4.h:156
const Vec4< T > & sub(const Vec4< T0 > &v1, const Vec4< T1 > &v2)
Definition: Vec4.h:170
T w() const
Definition: Vec4.h:91
const Vec4< T > & scale(T0 scale, const Vec4< T1 > &v)
Definition: Vec4.h:183
Vec4< T > Exp(Vec4< T > v)
Return a vector with the exponent applied to each of the components of the input vector.
Definition: Vec4.h:556
const Vec4< T > & log()
Definition: Vec4.h:243
const Vec4< T > & div(T0 scalar, const Vec4< T1 > &v)
Definition: Vec4.h:194
T & w()
Definition: Vec4.h:85
T dot(const Vec4< T > &v) const
Dot product.
Definition: Vec4.h:205
Dummy class for tag dispatch of conversion constructors.
Definition: Tuple.h:23
Definition: Exceptions.h:13
const Vec4< T > & setZero()
Set "this" vector to zero.
Definition: Vec4.h:114
const Vec4< T > & operator-=(const Vec4< S > &v1)
Subtract each element of the given vector from the corresponding element of this vector.
Definition: Vec4.h:379
ValueT value
Definition: GridBuilder.h:1287
bool operator==(const Vec4< T0 > &v0, const Vec4< T1 > &v1)
Equality operator, does exact floating point comparisons.
Definition: Vec4.h:401
T & y()
Definition: Vec4.h:83
Vec4(const Tuple< 4, Source > &v)
Conversion constructor.
Definition: Vec4.h:63
Vec4< typename promote< T0, T1 >::type > operator/(const Vec4< T0 > &v0, const Vec4< T1 > &v1)
Divide corresponding elements of v0 and v1 and return the result.
Definition: Vec4.h:460
const Vec4< T > & operator/=(const Vec4< S > &v1)
Divide each element of this vector by the corresponding element of the given vector.
Definition: Vec4.h:335
MatType scale(const Vec3< typename MatType::value_type > &s)
Return a matrix that scales by s.
Definition: Mat.h:637
Definition: Mat.h:187
Vec4< T > unitSafe() const
return normalized this, or (1, 0, 0, 0) if this is null vector
Definition: Vec4.h:293
Vec4< T > maxComponent(const Vec4< T > &v1, const Vec4< T > &v2)
Return component-wise maximum of the two vectors.
Definition: Vec4.h:544
const Vec4< T > & operator*=(const Vec4< S > &v1)
Multiply each element of this vector by the corresponding element of the given vector.
Definition: Vec4.h:312
bool normalize(T eps=static_cast< T >(1.0e-8))
this = normalized this
Definition: Vec4.h:265
const Vec4< T > & operator+=(S scalar)
Add scalar to each element of this vector.
Definition: Vec4.h:346
Vec4< T > unit(T eps=0) const
return normalized this, throws if null vector
Definition: Vec4.h:276
static unsigned numRows()
Definition: Vec4.h:389
Vec4< T > Log(Vec4< T > v)
Return a vector with log applied to each of the components of the input vector.
Definition: Vec4.h:561
Vec4< T > Abs(const Vec4< T > &v)
Definition: Vec4.h:521
T length() const
Length of the vector.
Definition: Vec4.h:212
static unsigned numElements()
Definition: Vec4.h:391
T * asPointer()
Definition: Vec4.h:93
T z() const
Definition: Vec4.h:90
Vec4< T > operator-() const
Negation operator, for e.g. v1 = -v2;.
Definition: Vec4.h:144
Vec4(T x, T y, T z, T w)
Constructor with four arguments, e.g. Vec4f v(1,2,3,4);.
Definition: Vec4.h:43
static unsigned numColumns()
Definition: Vec4.h:390
#define OPENVDB_VERSION_NAME
The version namespace name for this library version.
Definition: version.h.in:116
T & operator()(int i)
Alternative indexed reference to the elements.
Definition: Vec4.h:97
const std::enable_if<!VecTraits< T >::IsVec, T >::type & min(const T &a, const T &b)
Definition: Composite.h:103
T & x()
Reference to the component, e.g. v.x() = 4.5f;.
Definition: Vec4.h:82
#define OPENVDB_USE_VERSION_NAMESPACE
Definition: version.h.in:202
#define OPENVDB_IS_POD(Type)
Definition: Math.h:55
Vec4< typename promote< S, T >::type > operator+(const Vec4< T > &v, S scalar)
Add scalar to each element of the given vector and return the result.
Definition: Vec4.h:478