OpenVDB  9.0.1
Half.h
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////
2 //
3 // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
4 // Digital Ltd. LLC
5 //
6 // All rights reserved.
7 //
8 // Redistribution and use in source and binary forms, with or without
9 // modification, are permitted provided that the following conditions are
10 // met:
11 // * Redistributions of source code must retain the above copyright
12 // notice, this list of conditions and the following disclaimer.
13 // * Redistributions in binary form must reproduce the above
14 // copyright notice, this list of conditions and the following disclaimer
15 // in the documentation and/or other materials provided with the
16 // distribution.
17 // * Neither the name of Industrial Light & Magic nor the names of
18 // its contributors may be used to endorse or promote products derived
19 // from this software without specific prior written permission.
20 //
21 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 //
33 ///////////////////////////////////////////////////////////////////////////
34 
35 // Primary authors:
36 // Florian Kainz <kainz@ilm.com>
37 // Rod Bogart <rgb@ilm.com>
38 
39 //---------------------------------------------------------------------------
40 //
41 // half -- a 16-bit floating point number class:
42 //
43 // Type half can represent positive and negative numbers whose
44 // magnitude is between roughly 6.1e-5 and 6.5e+4 with a relative
45 // error of 9.8e-4; numbers smaller than 6.1e-5 can be represented
46 // with an absolute error of 6.0e-8. All integers from -2048 to
47 // +2048 can be represented exactly.
48 //
49 // Type half behaves (almost) like the built-in C++ floating point
50 // types. In arithmetic expressions, half, float and double can be
51 // mixed freely. Here are a few examples:
52 //
53 // half a (3.5);
54 // float b (a + sqrt (a));
55 // a += b;
56 // b += a;
57 // b = a + 7;
58 //
59 // Conversions from half to float are lossless; all half numbers
60 // are exactly representable as floats.
61 //
62 // Conversions from float to half may not preserve a float's value
63 // exactly. If a float is not representable as a half, then the
64 // float value is rounded to the nearest representable half. If a
65 // float value is exactly in the middle between the two closest
66 // representable half values, then the float value is rounded to
67 // the closest half whose least significant bit is zero.
68 //
69 // Overflows during float-to-half conversions cause arithmetic
70 // exceptions. An overflow occurs when the float value to be
71 // converted is too large to be represented as a half, or if the
72 // float value is an infinity or a NAN.
73 //
74 // The implementation of type half makes the following assumptions
75 // about the implementation of the built-in C++ types:
76 //
77 // float is an IEEE 754 single-precision number
78 // sizeof (float) == 4
79 // sizeof (unsigned int) == sizeof (float)
80 // alignof (unsigned int) == alignof (float)
81 // sizeof (unsigned short) == 2
82 //
83 //---------------------------------------------------------------------------
84 
85 #ifndef OPENVDB_MATH_HALF_HAS_BEEN_INCLUDED
86 #define OPENVDB_MATH_HALF_HAS_BEEN_INCLUDED
87 
88 #include <openvdb/Platform.h>
89 #include <openvdb/version.h>
90 #include <iostream>
91 
92 namespace openvdb {
94 namespace OPENVDB_VERSION_NAME {
95 namespace math {
96 namespace internal {
97 
99 {
100  public:
101 
102  //-------------
103  // Constructors
104  //-------------
105 
106  half () = default; // no initialization
107  half (float f);
108  // rule of 5
109  ~half () = default;
110  half (const half &) = default;
111  half (half &&) noexcept = default;
112 
113  //--------------------
114  // Conversion to float
115  //--------------------
116 
117  operator float () const;
118 
119 
120  //------------
121  // Unary minus
122  //------------
123 
124  half operator - () const;
125 
126 
127  //-----------
128  // Assignment
129  //-----------
130 
131  half & operator = (const half &h) = default;
132  half & operator = (half &&h) noexcept = default;
133  half & operator = (float f);
134 
135  half & operator += (half h);
136  half & operator += (float f);
137 
138  half & operator -= (half h);
139  half & operator -= (float f);
140 
141  half & operator *= (half h);
142  half & operator *= (float f);
143 
144  half & operator /= (half h);
145  half & operator /= (float f);
146 
147 
148  //---------------------------------------------------------
149  // Round to n-bit precision (n should be between 0 and 10).
150  // After rounding, the significand's 10-n least significant
151  // bits will be zero.
152  //---------------------------------------------------------
153 
154  half round (unsigned int n) const;
155 
156 
157  //--------------------------------------------------------------------
158  // Classification:
159  //
160  // h.isFinite() returns true if h is a normalized number,
161  // a denormalized number or zero
162  //
163  // h.isNormalized() returns true if h is a normalized number
164  //
165  // h.isDenormalized() returns true if h is a denormalized number
166  //
167  // h.isZero() returns true if h is zero
168  //
169  // h.isNan() returns true if h is a NAN
170  //
171  // h.isInfinity() returns true if h is a positive
172  // or a negative infinity
173  //
174  // h.isNegative() returns true if the sign bit of h
175  // is set (negative)
176  //--------------------------------------------------------------------
177 
178  bool isFinite () const;
179  bool isNormalized () const;
180  bool isDenormalized () const;
181  bool isZero () const;
182  bool isNan () const;
183  bool isInfinity () const;
184  bool isNegative () const;
185 
186 
187  //--------------------------------------------
188  // Special values
189  //
190  // posInf() returns +infinity
191  //
192  // negInf() returns -infinity
193  //
194  // qNan() returns a NAN with the bit
195  // pattern 0111111111111111
196  //
197  // sNan() returns a NAN with the bit
198  // pattern 0111110111111111
199  //--------------------------------------------
200 
201  static half posInf ();
202  static half negInf ();
203  static half qNan ();
204  static half sNan ();
205 
206 
207  //--------------------------------------
208  // Access to the internal representation
209  //--------------------------------------
210 
211  unsigned short bits () const;
212  void setBits (unsigned short bits);
213 
214 
215  public:
216 
217  union uif
218  {
219  unsigned int i;
220  float f;
221  };
222 
223  private:
224 
225  static short convert (int i);
226  static float overflow ();
227 
228  unsigned short _h;
229 
230  static const uif _toFloat[1 << 16];
231  static const unsigned short _eLut[1 << 9];
232 };
233 
234 
235 
236 //-----------
237 // Stream I/O
238 //-----------
239 
240 OPENVDB_API std::ostream & operator << (std::ostream &os, half h);
241 OPENVDB_API std::istream & operator >> (std::istream &is, half &h);
242 
243 
244 //----------
245 // Debugging
246 //----------
247 
248 OPENVDB_API void printBits (std::ostream &os, half h);
249 OPENVDB_API void printBits (std::ostream &os, float f);
250 OPENVDB_API void printBits (char c[19], half h);
251 OPENVDB_API void printBits (char c[35], float f);
252 
253 
254 //-------------------------------------------------------------------------
255 // Limits
256 //
257 // Visual C++ will complain if HALF_MIN, HALF_NRM_MIN etc. are not float
258 // constants, but at least one other compiler (gcc 2.96) produces incorrect
259 // results if they are.
260 //-------------------------------------------------------------------------
261 
262 #if (defined _WIN32 || defined _WIN64) && defined _MSC_VER
263 
264  #define VDB_HALF_MIN 5.96046448e-08f // Smallest positive half
265 
266  #define VDB_HALF_NRM_MIN 6.10351562e-05f // Smallest positive normalized half
267 
268  #define VDB_HALF_MAX 65504.0f // Largest positive half
269 
270  #define VDB_HALF_EPSILON 0.00097656f // Smallest positive e for which
271  // half (1.0 + e) != half (1.0)
272 #else
273 
274  #define VDB_HALF_MIN 5.96046448e-08 // Smallest positive half
275 
276  #define VDB_HALF_NRM_MIN 6.10351562e-05 // Smallest positive normalized half
277 
278  #define VDB_HALF_MAX 65504.0 // Largest positive half
279 
280  #define VDB_HALF_EPSILON 0.00097656 // Smallest positive e for which
281  // half (1.0 + e) != half (1.0)
282 #endif
283 
284 
285 #define VDB_HALF_MANT_DIG 11 // Number of digits in mantissa
286  // (significand + hidden leading 1)
287 
288 //
289 // floor( (VDB_HALF_MANT_DIG - 1) * log10(2) ) => 3.01... -> 3
290 #define VDB_HALF_DIG 3 // Number of base 10 digits that
291  // can be represented without change
292 
293 // ceil(VDB_HALF_MANT_DIG * log10(2) + 1) => 4.31... -> 5
294 #define VDB_HALF_DECIMAL_DIG 5 // Number of base-10 digits that are
295  // necessary to uniquely represent all
296  // distinct values
297 
298 #define VDB_HALF_RADIX 2 // Base of the exponent
299 
300 #define VDB_HALF_MIN_EXP -13 // Minimum negative integer such that
301  // HALF_RADIX raised to the power of
302  // one less than that integer is a
303  // normalized half
304 
305 #define VDB_HALF_MAX_EXP 16 // Maximum positive integer such that
306  // HALF_RADIX raised to the power of
307  // one less than that integer is a
308  // normalized half
309 
310 #define VDB_HALF_MIN_10_EXP -4 // Minimum positive integer such
311  // that 10 raised to that power is
312  // a normalized half
313 
314 #define VDB_HALF_MAX_10_EXP 4 // Maximum positive integer such
315  // that 10 raised to that power is
316  // a normalized half
317 
318 
319 //---------------------------------------------------------------------------
320 //
321 // Implementation --
322 //
323 // Representation of a float:
324 //
325 // We assume that a float, f, is an IEEE 754 single-precision
326 // floating point number, whose bits are arranged as follows:
327 //
328 // 31 (msb)
329 // |
330 // | 30 23
331 // | | |
332 // | | | 22 0 (lsb)
333 // | | | | |
334 // X XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX
335 //
336 // s e m
337 //
338 // S is the sign-bit, e is the exponent and m is the significand.
339 //
340 // If e is between 1 and 254, f is a normalized number:
341 //
342 // s e-127
343 // f = (-1) * 2 * 1.m
344 //
345 // If e is 0, and m is not zero, f is a denormalized number:
346 //
347 // s -126
348 // f = (-1) * 2 * 0.m
349 //
350 // If e and m are both zero, f is zero:
351 //
352 // f = 0.0
353 //
354 // If e is 255, f is an "infinity" or "not a number" (NAN),
355 // depending on whether m is zero or not.
356 //
357 // Examples:
358 //
359 // 0 00000000 00000000000000000000000 = 0.0
360 // 0 01111110 00000000000000000000000 = 0.5
361 // 0 01111111 00000000000000000000000 = 1.0
362 // 0 10000000 00000000000000000000000 = 2.0
363 // 0 10000000 10000000000000000000000 = 3.0
364 // 1 10000101 11110000010000000000000 = -124.0625
365 // 0 11111111 00000000000000000000000 = +infinity
366 // 1 11111111 00000000000000000000000 = -infinity
367 // 0 11111111 10000000000000000000000 = NAN
368 // 1 11111111 11111111111111111111111 = NAN
369 //
370 // Representation of a half:
371 //
372 // Here is the bit-layout for a half number, h:
373 //
374 // 15 (msb)
375 // |
376 // | 14 10
377 // | | |
378 // | | | 9 0 (lsb)
379 // | | | | |
380 // X XXXXX XXXXXXXXXX
381 //
382 // s e m
383 //
384 // S is the sign-bit, e is the exponent and m is the significand.
385 //
386 // If e is between 1 and 30, h is a normalized number:
387 //
388 // s e-15
389 // h = (-1) * 2 * 1.m
390 //
391 // If e is 0, and m is not zero, h is a denormalized number:
392 //
393 // S -14
394 // h = (-1) * 2 * 0.m
395 //
396 // If e and m are both zero, h is zero:
397 //
398 // h = 0.0
399 //
400 // If e is 31, h is an "infinity" or "not a number" (NAN),
401 // depending on whether m is zero or not.
402 //
403 // Examples:
404 //
405 // 0 00000 0000000000 = 0.0
406 // 0 01110 0000000000 = 0.5
407 // 0 01111 0000000000 = 1.0
408 // 0 10000 0000000000 = 2.0
409 // 0 10000 1000000000 = 3.0
410 // 1 10101 1111000001 = -124.0625
411 // 0 11111 0000000000 = +infinity
412 // 1 11111 0000000000 = -infinity
413 // 0 11111 1000000000 = NAN
414 // 1 11111 1111111111 = NAN
415 //
416 // Conversion:
417 //
418 // Converting from a float to a half requires some non-trivial bit
419 // manipulations. In some cases, this makes conversion relatively
420 // slow, but the most common case is accelerated via table lookups.
421 //
422 // Converting back from a half to a float is easier because we don't
423 // have to do any rounding. In addition, there are only 65536
424 // different half numbers; we can convert each of those numbers once
425 // and store the results in a table. Later, all conversions can be
426 // done using only simple table lookups.
427 //
428 //---------------------------------------------------------------------------
429 
430 
431 //----------------------------
432 // Half-from-float constructor
433 //----------------------------
434 
435 inline
436 half::half (float f)
437 {
438  uif x;
439 
440  x.f = f;
441 
442  if (f == 0)
443  {
444  //
445  // Common special case - zero.
446  // Preserve the zero's sign bit.
447  //
448 
449  _h = (unsigned short)(x.i >> 16);
450  }
451  else
452  {
453  //
454  // We extract the combined sign and exponent, e, from our
455  // floating-point number, f. Then we convert e to the sign
456  // and exponent of the half number via a table lookup.
457  //
458  // For the most common case, where a normalized half is produced,
459  // the table lookup returns a non-zero value; in this case, all
460  // we have to do is round f's significand to 10 bits and combine
461  // the result with e.
462  //
463  // For all other cases (overflow, zeroes, denormalized numbers
464  // resulting from underflow, infinities and NANs), the table
465  // lookup returns zero, and we call a longer, non-inline function
466  // to do the float-to-half conversion.
467  //
468 
469  int e = (x.i >> 23) & 0x000001ff;
470 
471  e = _eLut[e];
472 
473  if (e)
474  {
475  //
476  // Simple case - round the significand, m, to 10
477  // bits and combine it with the sign and exponent.
478  //
479 
480  int m = x.i & 0x007fffff;
481  _h = (unsigned short)(e + ((m + 0x00000fff + ((m >> 13) & 1)) >> 13));
482  }
483  else
484  {
485  //
486  // Difficult case - call a function.
487  //
488 
489  _h = convert (x.i);
490  }
491  }
492 }
493 
494 
495 //------------------------------------------
496 // Half-to-float conversion via table lookup
497 //------------------------------------------
498 
499 inline
500 half::operator float () const
501 {
502  return _toFloat[_h].f;
503 }
504 
505 
506 //-------------------------
507 // Round to n-bit precision
508 //-------------------------
509 
510 inline half
511 half::round (unsigned int n) const
512 {
513  //
514  // Parameter check.
515  //
516 
517  if (n >= 10)
518  return *this;
519 
520  //
521  // Disassemble h into the sign, s,
522  // and the combined exponent and significand, e.
523  //
524 
525  unsigned short s = _h & 0x8000;
526  unsigned short e = _h & 0x7fff;
527 
528  //
529  // Round the exponent and significand to the nearest value
530  // where ones occur only in the (10-n) most significant bits.
531  // Note that the exponent adjusts automatically if rounding
532  // up causes the significand to overflow.
533  //
534 
535  e = (unsigned short)(e >> (9 - n));
536  e = (unsigned short)(e + (e & 1));
537  e = (unsigned short)(e << (9 - n));
538 
539  //
540  // Check for exponent overflow.
541  //
542 
543  if (e >= 0x7c00)
544  {
545  //
546  // Overflow occurred -- truncate instead of rounding.
547  //
548 
549  e = _h;
550  e = (unsigned short)(e >> (10 - n));
551  e = (unsigned short)(e << (10 - n));
552  }
553 
554  //
555  // Put the original sign bit back.
556  //
557 
558  half h;
559  h._h = (unsigned short)(s | e);
560 
561  return h;
562 }
563 
564 
565 //-----------------------
566 // Other inline functions
567 //-----------------------
568 
569 inline half
571 {
572  half h;
573  h._h = _h ^ 0x8000;
574  return h;
575 }
576 
577 
578 inline half &
579 half::operator = (float f)
580 {
581  *this = half (f);
582  return *this;
583 }
584 
585 
586 inline half &
587 half::operator += (half h)
588 {
589  *this = half (float (*this) + float (h));
590  return *this;
591 }
592 
593 
594 inline half &
595 half::operator += (float f)
596 {
597  *this = half (float (*this) + f);
598  return *this;
599 }
600 
601 
602 inline half &
603 half::operator -= (half h)
604 {
605  *this = half (float (*this) - float (h));
606  return *this;
607 }
608 
609 
610 inline half &
611 half::operator -= (float f)
612 {
613  *this = half (float (*this) - f);
614  return *this;
615 }
616 
617 
618 inline half &
619 half::operator *= (half h)
620 {
621  *this = half (float (*this) * float (h));
622  return *this;
623 }
624 
625 
626 inline half &
627 half::operator *= (float f)
628 {
629  *this = half (float (*this) * f);
630  return *this;
631 }
632 
633 
634 inline half &
635 half::operator /= (half h)
636 {
637  *this = half (float (*this) / float (h));
638  return *this;
639 }
640 
641 
642 inline half &
643 half::operator /= (float f)
644 {
645  *this = half (float (*this) / f);
646  return *this;
647 }
648 
649 
650 inline bool
652 {
653  unsigned short e = (_h >> 10) & 0x001f;
654  return e < 31;
655 }
656 
657 
658 inline bool
659 half::isNormalized () const
660 {
661  unsigned short e = (_h >> 10) & 0x001f;
662  return e > 0 && e < 31;
663 }
664 
665 
666 inline bool
667 half::isDenormalized () const
668 {
669  unsigned short e = (_h >> 10) & 0x001f;
670  unsigned short m = _h & 0x3ff;
671  return e == 0 && m != 0;
672 }
673 
674 
675 inline bool
676 half::isZero () const
677 {
678  return (_h & 0x7fff) == 0;
679 }
680 
681 
682 inline bool
683 half::isNan () const
684 {
685  unsigned short e = (_h >> 10) & 0x001f;
686  unsigned short m = _h & 0x3ff;
687  return e == 31 && m != 0;
688 }
689 
690 
691 inline bool
692 half::isInfinity () const
693 {
694  unsigned short e = (_h >> 10) & 0x001f;
695  unsigned short m = _h & 0x3ff;
696  return e == 31 && m == 0;
697 }
698 
699 
700 inline bool
702 {
703  return (_h & 0x8000) != 0;
704 }
705 
706 
707 inline half
708 half::posInf ()
709 {
710  half h;
711  h._h = 0x7c00;
712  return h;
713 }
714 
715 
716 inline half
717 half::negInf ()
718 {
719  half h;
720  h._h = 0xfc00;
721  return h;
722 }
723 
724 
725 inline half
726 half::qNan ()
727 {
728  half h;
729  h._h = 0x7fff;
730  return h;
731 }
732 
733 
734 inline half
735 half::sNan ()
736 {
737  half h;
738  h._h = 0x7dff;
739  return h;
740 }
741 
742 
743 inline unsigned short
744 half::bits () const
745 {
746  return _h;
747 }
748 
749 
750 inline void
751 half::setBits (unsigned short bits)
752 {
753  _h = bits;
754 }
755 
756 } // namespace internal
757 } // namespace math
758 } // namespace OPENVDB_VERSION_NAME
759 } // namespace openvdb
760 
761 #endif // OPENVDB_MATH_HALF_HAS_BEEN_INCLUDED
#define OPENVDB_API
Definition: Platform.h:254
bool isNan(const float x)
Return true if x is a NaN (Not-A-Number) value.
Definition: Math.h:396
OPENVDB_API void printBits(char c[35], float f)
bool isFinite(const float x)
Return true if x is finite.
Definition: Math.h:376
OPENVDB_API std::istream & operator>>(std::istream &is, half &h)
unsigned int i
Definition: Half.h:219
bool isNegative(const Type &x)
Return true if x is less than zero.
Definition: Math.h:368
Definition: Exceptions.h:13
Vec3< typename promote< T, Coord::ValueType >::type > operator-(const Vec3< T > &v0, const Coord &v1)
Allow a Coord to be subtracted from a Vec3.
Definition: Coord.h:550
float f
Definition: Half.h:220
bool isZero(const Type &x)
Return true if x is exactly equal to zero.
Definition: Math.h:338
#define OPENVDB_VERSION_NAME
The version namespace name for this library version.
Definition: version.h.in:116
internal::half half
Definition: Types.h:29
#define OPENVDB_USE_VERSION_NAMESPACE
Definition: version.h.in:202
OPENVDB_API std::ostream & operator<<(std::ostream &os, half h)